Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 357: 120738, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574710

RESUMO

The pyrolysis of mint stalks and lemon peels was performed to synthesize mint-stalks (MBC) and lemon-peels (LBC) derived biochars for adsorbing methylene blue (MB). The preparation, characterization, and application of MBC in adsorption have not been reported in the literature. MBC showed higher surface area and carbon content than that of LBC. The removal ratios of MB were 87.5% and 60% within 90 min for MBC and LBC, respectively at pH 7, temperature of 30oC, adsorbent dose of 0.5 g/L, and MB concentration of 5 mg/L. The optimal MBC dose was 1 g/L achieving a removal efficiency of 93.6% at pH 7, temperature of 30oC, contact time of 90 min, and initial dye concentration of 5.0 mg/L. The adsorption efficiency decreased from 98.6% to 31.33% by raising the dye concentration from 3.0 mg/L to 30 mg/L. Further, the increase of adsorbent dose to 10 g/L could achieve 94.2%, 90.3%, 87.6%, and 84.1% removal efficiencies of MB in the case of initial concentrations of 200 mg/L, 300 mg/L, 400 mg/L, and 500 mg/L, respectively. MBC showed high stability in adsorbing MB under five cycles, and the performed analyses after adsorption reaffirmed the stability of MBC. The adsorption mechanism indicated that the adsorption of MB molecules on the biochar's surface was mainly because of the electrostatic interaction, hydrogen bonding, and π-π stacking. Pseudo-second-order and Langmuir models could efficiently describe the adsorption of MB on the prepared biochar. The adsorption process is endothermic and spontaneous based on the adsorption thermodynamics. The proposed adsorption system is promising and can be implemented on a bigger scale. Moreover, the prepared biochar can be implemented in other applications such as photocatalysis, periodate, and persulfate activation-based advanced oxidation processes.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Azul de Metileno/química , Adsorção , Concentração de Íons de Hidrogênio , Carvão Vegetal/química , Termodinâmica , Cinética
2.
J Environ Manage ; 357: 120786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583386

RESUMO

An innovative task was undertaken to convert ubiquitous and toxic electronic waste, waste toner powder (WTP), into novel adsorbents. Alkaline modification with KOH, NaOH, and NH4OH was employed for the first time to synthesize a series of surface-modified WTP with enhanced dispersibility and adsorption capacity. XRD, XRF, FTIR, and BET analyses confirmed that the prepared KOH-WTP, NaOH-WTP, and NH4OH-WTP were oxygen-functionalized self-doped iron oxide-graphite nanocomposites. The prepared adsorbents were used to remove methylene blue and tetracycline from aqueous solutions. KOH-WTP (0.1 g/100 mL) adsorbed 80% of 10 mg/L methylene blue within 1 h, while 0.1 g/100 mL NH4OH-WTP removed 72% of 10 mg/L tetracycline in 3 h. Exploring surface chemistry by altering solution pH and temperature suggested that hydrogen bonding, electrostatic interactions, π-π electron stacking, and pore filling were plausible adsorption mechanisms. Scanning electron microscopy revealed a diminishing adsorbents porosity after adsorption proving the filling of pores by the adsorbates. KOH-WTP and NH4OH-WTP removed 77% and 61% of methylene blue and tetracycline respectively in the fourth reuse. The adsorption data of methylene blue and tetracycline fitted the Freundlich isotherm model. The maximum adsorption capacities of KOH-WTP and NH4OH-WTP for methylene blue and tetracycline were 59 mg/g and 43 mg/g respectively. The prepared adsorbents were also compared with other adsorbents to assess their performance. The transformation of waste toner powder into magnetically separable oxygen-functionalized WTP with outstanding recyclability and adsorption capacity showcases a significant advancement in sustainable wastewater treatment. This further aligns with the principles of the circular economy through the utilization of toxic e-waste in value-added applications. Additionally, magnetic separation of surface-modified WTP post-treatment can curtail filtration and centrifugation expenses and adsorbent loss during wastewater treatment.


Assuntos
Compostos Férricos , Grafite , Nanocompostos , Poluentes Químicos da Água , Azul de Metileno , Adsorção , Pós , Hidróxido de Sódio , Tetraciclina , Antibacterianos , Oxigênio , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de Hidrogênio
3.
Environ Sci Pollut Res Int ; 31(16): 24153-24162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436857

RESUMO

The photo-thermal activation of persulfate (PS) was carried out to degrade various pollutants such as reactive blue-222 (RB-222) dye, sulfamethazine, and atrazine. Optimizing the operating parameters showed that using 0.90 g/L of PS at pH 7, temperature of 90 °C, initial dye concentration of 21.60 mg/L, and reaction time of 120 min could attain a removal efficiency of 99.30%. The degradation mechanism was explored indicating that hydroxyl and sulfate radicals were the prevailing reactive species. The degradation percentages of 10 mg/L of sulfamethazine and atrazine were 83.30% and 70.60%, respectively, whereas the mineralization ratio was 63.50% in the case of real textile wastewater under the optimal conditions at a reaction time of 120 min. The treatment cost per 1 m3 of real wastewater was appraised to be 1.13 $/m3 which assured the inexpensiveness of the proposed treatment system. This study presents an effective and low-cost treatment system that can be implemented on an industrial scale.


Assuntos
Atrazina , Poluentes Químicos da Água , Águas Residuárias , Sulfametazina , Poluentes Químicos da Água/análise , Oxirredução
4.
Environ Sci Pollut Res Int ; 31(17): 25163-25181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462567

RESUMO

A novel biochar (BC), derived from spinach leaves, was utilized as an activator for persulfate (PS) in the degradation of methylene blue (MB) dye under visible light conditions. Thorough analyses were conducted to characterize the physical and chemical properties of the biochar. The (BC + light)/PS system exhibited superior MB degradation efficiency at 83.36%, surpassing the performance of (BC + light)/hydrogen peroxide and (BC + light)/peroxymonosulfate systems. The optimal conditions were ascertained through the implementation of response surface methodology. Moreover, the (BC + light)/PS system demonstrated notable degradation ratios of 90.82%, 81.88%, and 84.82% for bromothymol blue dye, paracetamol, and chlorpyrifos, respectively, under optimal conditions. The predominant reactive species responsible for MB degradation were identified as sulfate radicals. Notably, the proposed system consistently achieved high removal efficiencies of 99.02%, 96.97%, 94.94%, 92%, and 90.35% for MB in five consecutive runs. The applicability of the suggested system was further validated through its effectiveness in treating real textile wastewater, exhibiting a substantial MB removal efficiency of 98.31% and dissolved organic carbon mineralization of 87.49%.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Spinacia oleracea , Carvão Vegetal/química , Luz , Têxteis , Poluentes Químicos da Água/análise
5.
Chemosphere ; 352: 141448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354865

RESUMO

In this study, novel nanohybrids of biosynthesized zinc oxide (ZnO) and magnetite-nanocarbon (Fe3O4-NC) obtained from the carbonization of toner powder waste were fabricated and investigated for persulfate (PS) activation for the efficient degradation of tetracycline (TCN). The chemical and physical properties of the synthesized catalysts were analyzed using advanced techniques. ZnO/Fe3O4-NC nanohybrid with mass ratio 1:2, respectively in the presence of PS showed the highest TCN removal efficiency compared to the individual components (ZnO and Fe3O4-NC) and other nanohybrids with mass ratios of 1:1 and 2:1. The results indicated that efficient degradation of TCN could be attained at pH 3-7. The optimum operating parameters were TCN concentration of 12.8 mg/L, PS concentration of 7 Mm, and catalyst dose of 0.55 g/L. The high stability of ZnO/Fe3O4-NC (1:2) nanocomposite was assured by the slight drop in TCN degradation percentage from 97.27% to 85.45% after five successive runs under the optimum conditions and the concentrations of leached iron and zinc into the solution were monitored. The quenching experiments explored that the prevailing reactive entities were sulfate radicals. Additionally, the degradation of TCN in various water matrices was investigated, and a degradation pathway was suggested. Further, degradation of real pharmaceutical waste was conducted showing that the removal efficiencies of TCN, total organic carbon (TOC), and chemical oxygen demand (COD) were 89.79, 80.65, and 78.64% after 2 h under the optimum conditions. The effectiveness of the proposed system (ZnO/Fe3O4-NC (1:2) @ PS) for the degradation of real samples compiled from industrial effluents as well as its inexpensiveness and green nature qualify this system for the full-scale application.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Óxido de Zinco , Óxido de Zinco/química , Águas Residuárias , Pós , Antibacterianos , Tetraciclina , Nanocompostos/química , Catálise , Poluentes Químicos da Água/química
6.
RSC Adv ; 14(3): 1977-1983, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38196912

RESUMO

In this study, we reported sustainable and economical upcycling methods for utilizing plastics such as polyethylene terephthalate (PET) and polypropylene (PP) compiled from the garbage of a residential area as cheap precursors for the production of high-value carbon materials such as graphene (G), carbon spheres (CS), and carbon nanotubes (CNTs) using different thermal treatment techniques. Graphene, carbon spheres, and carbon nanotubes were successfully synthesized from PET, PP, and PET, respectively via catalytic pyrolysis. XRD and FTIR analyses were conducted on the three materials, confirming the formation of carbon and their graphitic structure. TEM images displayed uniform and consistent morphological structures of the fabricated materials. EDX data confirmed that the prepared carbon-based materials only contained carbon and oxygen without any significant contaminations. XPS results revealed significant peaks in the C 1s spectra associated with sp2 and sp3 hybridized carbon for the three materials. BET spectra showed that the prepared CNTs (54.872 m2 g-1) have the highest surface area followed by carbon spheres (54.807 m2 g-1). The thermal stability of graphene surpassed both carbon spheres and carbon nanotubes which is mainly attributed to the stronger inter-molecular bonds of graphene. Based on the characterization of the prepared materials, these materials are promising to be utilized in environmental remediation applications due to their high carbon content, low cost, and high surface area.

7.
Environ Sci Pollut Res Int ; 31(3): 3951-3963, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097836

RESUMO

Given the immense threats of microplastics, we herein investigate photodegrading the debris of polyethylene bags (PBs) by sulfur-doped titanium dioxide. The optimization of operating parameters showed that controlling the water pH at 3 and introducing PBs by 0.10 g/L under a catalyst dose of 1.25 g/L reduced the polyethylene mass by 3.10% in 7 h, whereas raising the catalyst dose to 3 g/L improved the mass reduction to 4.72%. The extension of degradation time to 100 h at pH 3, catalyst dosage of 3 g/L, and PBs concentration of 0.10 g/L increased the mass loss ratio to 21.74%. Scanning electron microscopy of PBs after 100 h of photodegradation showed cracks on the surface accompanied by the increase of carbonyl index from 0.52 to 1.41 confirming the breakdown of the polymeric chain. Total organic carbon increased from 0.80 to 7.76 mg/L in the first 10 h of photodegradation, then decreased to 1 mg/L after extending the reaction time to 100 h due to the mineralization of organic intermediates generated from the photodegradation of PBs. Trapping tests exhibited the major role of hydroxyl radicals in the degradation system, and the catalyst showed high stability under five repetitive runs. This study proposes an efficient treatment system that can be implemented on a wider scale utilizing the synthesized catalyst to degrade plastics efficiently before their release to water streams.


Assuntos
Polietileno , Poluentes Químicos da Água , Fotólise , Água , Plásticos , Poluentes Químicos da Água/análise , Titânio , Catálise
8.
Sci Rep ; 13(1): 13190, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580319

RESUMO

Herein, a novel composite of Corchorus olitorius-derived biochar and Bi12O17Cl2 was fabricated and utilized for the degradation of tetracycline (TC) in a solar photo-oxidation reactor. The morphology, chemical composition, and interaction between the composite components were studied using various analyses. The biochar showed a TC removal of 52.7% and COD mineralization of 59.6% using 150 mg/L of the biochar at a pH of 4.7 ± 0.5, initial TC concentration of 163 mg/L, and initial COD of 1244 mg/L. The degradation efficiency of TC increased to 63% and the mineralization ratio to 64.7% using 150 mg/L of bare Bi12O17Cl2 at a pH of 4.7 ± 0.5, initial TC concentration of 178 mg/L, and COD of 1034 mg/L. In the case of biochar/Bi12O17Cl2 composite, the degradation efficiency of TC and COD mineralization ratio improved to 85.8% and 77.7% due to the potential of biochar to accept electrons which retarded the recombination of electrons and holes. The synthesized composite exhibited high stability over four succeeding cycles. According to the generated intermediates, TC could be degraded to caprylic acid and pentanedioic acid via the frequent attack by the reactive species. The prepared composite is a promising photocatalyst and can be applied in large-scale systems due to its high degradation and mineralization performance in a short time besides its low cost and stability.


Assuntos
Antibacterianos , Corchorus , Antibacterianos/química , Águas Residuárias , Descontaminação , Tetraciclina/análise , Luz , Catálise
9.
Environ Sci Pollut Res Int ; 30(37): 87449-87464, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37420158

RESUMO

Pure zero-valent iron (ZVI) was supported on silica and starch to enhance the activation of persulfate (PS) for tetracycline degradation. The synthesized catalysts were characterized by microscopic and spectroscopic methods to assess their physical and chemical properties. High tetracycline removal (67.55%) occurred using silica modified ZVI (ZVI-Si)/PS system due to the improved hydrophilicity and colloidal stability of ZVI-Si. Incorporating light into the ZVI-Si/PS system improved the degradation performance by 9.45%. Efficient degradation efficiencies were recorded at pH 3-7. The optimum operating parameters determined by the response surface methodology were PS concentration of 0.22 mM, initial tetracycline concentration of 10 mg/L, and ZVI-Si dose of 0.46 g/L, respectively. The rate of tetracycline degradation declined with increasing tetracycline concentration. The degradation efficiencies of tetracycline were 77%, 76.4%, 75.7%, 74.5%, and 73.75% in five repetitive runs at pH 7, 20 mg/L tetracycline concentration, 0.5 g/L ZVI-Si dose, and 0.1 mM PS concentration. The degradation mechanism was explained, and sulfate radicals were the principal reactive oxygen species. The degradation pathway was proposed based on liquid chromatography-mass spectroscopy. Tetracycline degradation was favorable in distilled and tap water. The ubiquitous presence of inorganic ions and dissolved organic matter in the lake, drain, and seawater matrices interfered with the tetracycline degradation. The high reactivity, degradation performance, stability, and reusability of ZVI-Si substantiate the potential practical application of this material for the degradation of real industrial effluents.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Água , Poluentes Químicos da Água/química , Oxirredução , Antibacterianos , Tetraciclina
10.
Environ Res ; 229: 115987, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116677

RESUMO

Herein, biochar derived from spinach remnants was prepared for the first-time for the utilization in persulfate (PS) activation to effectively degrade atrazine. Characteristics of the prepared biochar were explored using advanced analyses. Control experiments implied the efficient activation of PS in the presence of the synthesized biochar. The highest degradation of atrazine (99.8%) could be attained at atrazine concentration of 7.2 mg/L, PS concentration of 7.7 mM, biochar dose of 1.88 g/L and reaction time of 120 min. The prepared biochar displayed a high recyclability performance attaining degradation ratios of 98.2, 96.53, 96.4, 92.8 and 88% in five sequential cycles under the optimum conditions. The degradation mechanism was explored showing that sulfate radicals were the prime reactive species in the degradation system. The degradation intermediates were specified, and the degradation pathways were propositioned. The highest REs in agrochemical industrial wastewater reached 80.21 and 83.43% of atrazine and TOC after 2 h. NH3 (348.4 mg/L) was reduced to 168.3 mg/L (RE: 51.7%) while level of NO3 (94.7 mg/L) was increased by 98.8% (188.3 mg/L) in the treated effluent due to oxidation of NH3 to nitrite and then nitrate. Extension of reaction time could contribute to achieving full mineralization of the real wastewater due to the residual PS after 120 min. The effectiveness and low-cost of biochar@PS system as well as its high performance in degrading real wastewater support the efficiency of the prepared biochar to be applied on an industrial scale.


Assuntos
Atrazina , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Spinacia oleracea , Poluentes Químicos da Água/análise , Oxirredução
11.
J Environ Manage ; 332: 117402, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731416

RESUMO

This study investigates a combined photocatalytic and adsorption system to maximize the removal of 1,4 dioxane from hazardous landfill leachate (HLL). The production of transformation products was also investigated to obtain a comprehensive evaluation of the treatment system. Copper/iron doped zinc oxide (Cu-Fe-ZnO) was introduced to biochar to form a hybrid materials and used to treat HLL contaminated with 1,4 dioxane of 355.0 ± 11.7 mg/L. The Cu-Fe-ZnO/biochar removed 93.1 ± 8.7% of 1,4 dioxane at a dose of 0.6 g/L within 90 min, as compared with only 42.7 ± 3.3% by 1.2 g/L of bare biochar within 210 min. The Cu-Fe-ZnO/biochar degraded 1,4 dioxane into ethylene glycol, glycolic acid, and formic acid. The 1,4 dioxane removal mechanisms were investigated using the density functional theory, demonstrating that doping of ZnO with metal atoms (Cu-Fe) narrowed the bandgap from 3.307 eV to 2.736 eV. The enhanced photocatalytic activity of ZnO was also supported by the role of biochar in increasing the reactive species and adsorbing the pollutant molecules. The high degradation efficiency of 1,4 dioxane using small catalyst doses with short reaction times would reduce the treatment cost and improve the system's applicability for treating HLL and industrial effluents.


Assuntos
Poluentes Químicos da Água , Óxido de Zinco , Poluentes Químicos da Água/análise , Carvão Vegetal , Dioxanos
12.
Environ Res ; 223: 115460, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775090

RESUMO

The sustainable management of toner waste (T-raw) was performed via carbonization at 500 °C (T-500) and 600 °C (T-600) to produce iron oxide-nanographene nanohybrid (FeO-NG) for activating persulfate (PS) to efficiently degrade dyes (methylene blue, MB), antibiotics (sulfamethazine, SMZ), and pesticides (diazinon, DZN). Morphology, crystallinity, chemical structure, chemical composition, surface area, and pore size distribution of the synthesized materials were investigated using various analyses. High degradation ratios of MB were attained over a wide pH range (2-7), and the optimum operating conditions were determined. The FeO-NG/PS system was tested in different water matrices. MB degradation efficiency dropped from 80.13% to 78.56% after five succeeding experiments, proving the high stability of T-500. Trapping experiments proved the major role of sulfate radicals and the minor contribution of singlet oxygen. The toxicity evaluation of the treated and untreated MB solutions was conducted via measuring the cell viability, showing an increase in cell viability ratio after the degradation of MB. The degradation efficiencies of DZN and SMZ were 97.54% and 83.7%, respectively and the mineralization ratios were 74.08% and 60.37% at initial concentrations of sulfamethazine and diazinon of 50 and 100 mg/L, respectively. The high degradation efficiency of emerging micropollutants as well as the inexpensiveness, and facile synthesis of the catalyst boost the prospect of applying the proposed system on an industrial scale.


Assuntos
Sulfametazina , Poluentes Químicos da Água , Pós , Diazinon , Oxirredução , Poluentes Químicos da Água/análise
13.
Sci Rep ; 12(1): 22443, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36575278

RESUMO

Pure nano zero-valent iron (NZVI) was fabricated under optimum conditions based on material production yield and its efficiency toward acid blue dye-25 decolorization. The optimum prepared bare NZVI was immobilized with two different supports of silica and starch to fabricate their composites nanomaterials. The three different prepared zero-valent iron-based nanomaterials were evaluated for removal of hexavalent chromium (Cr(VI)). The silica-modified NZVI recorded the most outstanding removal efficiency for Cr(VI) compared to pristine NZVI and starch-modified NZVI. The removal efficiency of Cr(VI) was improved under acidic conditions and decreased with raising the initial concentration of Cr(VI). The co-existence of cations, anions, and humic acid reduced Cr(VI) removal efficiency. The removal efficiency was ameliorated from 96.8% to 100% after adding 0.75 mM of H2O2. The reusability of silica-modified NZVI for six cycles of Cr(VI) removal was investigated and the removal mechanism was suggested as the physicochemical process. Based on Langmuir isotherm, the maximal Cr(VI) removal capacity attained 149.25 mg/g. Kinetic and equilibrium data were efficiently fitted using the pseudo-second-order and Langmuir models, respectively confirming the proposed mechanism. Diffusion models affirmed that the adsorption rate was governed by intraparticle diffusion. Adsorption thermodynamic study suggested the spontaneity and exothermic nature of the adsorption process. This study sheds light on the technology that has potential for magnetic separation and long-term use for effective removal of emerging water pollutants.

14.
J Environ Manage ; 314: 115108, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35468438

RESUMO

The performance of three solid iron wastes (SIW-1, SIW-2 and SIW-3) was evaluated as an activator of persulfate (PS) for the degradation of methylene blue (MB). SIW-3 showed the highest performance among the three catalysts. The morphology, chemical composition and chemical structure of the three SIW were investigated using various analyses. Complete degradation of methylene blue (MB) in neutral pH was achieved after 60 min at PS concentration of 4 mM, initial MB concentration of 10 mg/L and catalyst dose of 1.0 g/100 mL using light. The degradation efficiency of MB decreased from 100% to 34.6% by increasing the initial MB concentration from 10 mg/L to 100 mg/L. The degradation of MB followed the second-order model. Scavenging experiments showed the major role of hydroxyl and sulfate radicals in the MB degradation. The performance of iron waste in the retained form was investigated and the degradation efficiencies were 96%, 91.2%, 91%, 89% and 86% in five succeeding cycles at pH 7, catalyst dose of 1 g/100 mL, initial MB concentration of 10 mg/L and PS concentration of 4 mM. Moreover, the reusability of suspended iron waste was investigated. The degradation efficiencies of methylene blue, methyl red, Congo red and acid blue-25 were 100%, 97%, 96% and 97.3%, respectively after 60 min. The degradation pathways of MB were proposed after the identification of intermediates using liquid chromatography-mass spectroscopy analysis. This study revealed that the iron waste can be efficiently employed for PS activation in the suspended and immobilized modes which reduces the total cost of the Fenton process paving the way for the large-scale application of this technique.


Assuntos
Ferro , Poluentes Químicos da Água , Catálise , Ferro/química , Azul de Metileno/química , Aço , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...